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I INTRODUCTION

The objectives of the research reported here, as outlined in the Statement of Work in
SRI's Proposal for Research EDU 85-79 (for a three-year effort), are the following:

" Calculate the angular dependence of the hardness.

" Determine the transient response of the hardness.

" Improve the accuracy of the strain coefficient calculations for pure semiconductors.

" Calculate the alloy composition variation of the strain coefficients.
* Develop an extension in terms of microscopic quantities of the Griffith crack propa-

gation theory.

• Deduce a theory of crack initiation.

" Devise strategies for improving the fracture characteristics of semiconductors.

This report covers our accomplishments in the first year of the three-year effort.

In this period, we have concentrated much of our efforts on our new statistical theory of
order/disorder transitions. The work has reached a plateau that warrants publication and a long
paper is in preparation. The manuscript will be done in about a week, and the finished docu-
ment will be completed and sent to AFOSR within a month; the major conclusions are
presented in Section II.

We have discovered that the electron/electron Coulomb interactions, as modified by
long-ranged Madelung sums, represent a new and major contribution to the mixing enthalpy
and more generally to atomic correlations in alloys. This term is driven by polarity
mismatches, rather than the bond-length mismatches traditionally thought to be responsible for
mixing enthalpies. The major results of this aspect of the work are in Section Ill.

We have also found a method to calculate accurately the bond lengths, bond energies,
and elastic coefficients of all the semiconductor compounds. The results are summarized in
Section IV. While no detailed calculations are completed, we also have devised a way to
extend these calculations to alloys. This extension is also discussed in Section IV.

The present status of our work on the angular dependence of the hardness is presented in
Section V. Significant progress has been made on the vacancy-formation-energy problem, both
for pure compounds and alloys, and they are outlined in Section VI. This is an essential
ingredient in the understanding of a number of dislocation-related phenomena.

Appendices A and B to this report are reprints of publications in the technical literature
that were written with support from this contract. Appendix C is the chronological list of pub-
lications under this contract, while Appendix D lists the professional personnel who have con-
tributed to this work, and Appendix E describes the interactions.
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I[ CORRELATIONS IN SEMICONDUCTOR ALLOYS

We have demonstrated (Chen and Sher, 1985a, 1985b; Sher, Chen, and van Schilfgaarde,
1986) that the atomic distribution of constituents in semiconductor alloys is never truly ran-
dom. There are always interactions causing correlations; the degree and nature of the correla-
tions depend on which interactions dominate and on the growth conditions. While we have
identified most of the interactions that are expected to cause correlations, not all of them have
been treated completely to date. Therefore, while some details remain unclear, the principal
effects can now be appreciated in broad terms, and we shall attempt to identify them in the fol-
lowing discussion.

In the formalism reported here, we start by focusing on small clusters of atoms that are
called microclusters. Once the microcluster size is selected, the total energy of the solid is
expressed as a sum of cluqter energies, and the number of configurations of the solid
corresponding to a given total energy is calculated. Some approximations in the microcluster
energy calculations and microcluster/microcluster interactions are neglected, but once these
approximations are made, there is no appreciable additional inaccuracy introduced in the statist-
ical mechanics arguments leading to microcluster population distributions. The accuracy of the
final result for a given physical property (e.g. critical order/disorder transition temperature)
differs for different properties, but in general becomes progressively better the larger the cluster
size used. Two atom clusters are found to give most trends properly, but differ in detail from
the answers found for the five-atom, sixteen-bond clusters that are the basis for most of the
numerical results presented in this report. We have not attempted to extend the numerical
results for larger clusters.

We have demonstrated that for an n-atom microcluster in state j, represented schemati-
cally as Anfnj(B)Bnj(B), corresponding to a given number nj(B) of B atoms if the degeneracy gj =

n)) of a given energy state is not split, and if depends linearly on nj(B), then the aver-n,(B) a ie nrysaeisntpltadi
age population distribution -j is always that of a random alloy xj° . Therefore, only interactions
that split the degeneracy or cause a nonlinear variation of ej on nj(B) drive correlations. To be
precise (as can be seen from the detailed analysis), the energies ej - nj(B)t(B), where pt(B) is
the B atom chemical potential in the grand partition function formalism, are responsible for
populations of state j.

We have identified three mechanisms that cause appropriate nonlinear variations of Ej:

A type caused by strains resulting from bond-length mismatches between the consti-
tuents.

%~ Chemical interactions, caused by potential differences between the constituents that
-% are responsible for charge shifts among the atoms, and in tight-binding terminology
. the ionic, covalent, and metallization contributions to bond energies.

A type arising from the electron/electron Cculomb interactions as modified by long-
ranged Madelung sums (van Schilfgaarde, Chen, and Sher, 1986).

2
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As a rule, the bond-length mismatch terms dominate, but the other terms can introduce sub-
stantial corrections and in the exceptional cases (where there is a near-bond-length match) are
all that remains. Until recently, it was thought that cluster energies were nearly independent of
composition (Guggenheim, 1952). In consequence, if the average of the AA and BB interac-
tion energies exceeded the AB energy, then compound formation was thought to be favored;
while in the opposite case, spinodal decomposition was favored. The entropy terms always
favor the intermediate random distribution.

We now know that this picture is flawed and that the cluster excess energies are in fact
highly composition-dependent. In the strain terms, the cluster whose volume most closely
matches the average volume per cluster for the alloy will have the lowest energy. As a conse-
quence, certain alloy compositions (e.g. x = 0.25, 0.5, 0.75, where simple stoichiometric com-
pounds with long-range order could exist) have comparatively low excess-free energies. This
means that it is possible in principle to have a positive mixing entropy parameter defined by
Q -AF/[x(1-x)] and still have compound formation favored for some special compositions x.
However, this does not happen as a general rule. For example, in Figure 1(a) the excess
enthalpy AE has no sharp feature at the special concentrations, even for material grown at
room temperature. The shape of the corresponding free energy AF in Figure l(b) is charac-
teristic of a material that undergoes normal spinodal decomposition. Figure 2(a) exhibits the
excess energy per microcluster ej variation with composition for each of the five-atom (16-
bond) cluster types. Figures 2(b) and 3(a) display ej, and the corresponding excess free ener-
gies AF for a stiff-lattice case of Gal-xlnAs, in which it has been assumed that the twelve
outer bonds of the cluster are attached to C-type atoms that are fixed at lattice spacings
corresponding to Vegard's rule. Even in this stiff-lattice case, normal spinodal decomposition
is the rule. It is not until we also set the angular distortion elastic constant 3 in the Valence
Force Field model to zero that the excess free energy curve for GaInAs in Figure 3(b) has a
shape that corresponds to decomposition into an ordered compound and a random alloy. We
have resisted the temptation to present phase diagrams (critical temperature versus composition)
in this report because they will be modified substantially by the Coulomb interactions that are
not yet incorporated completely into the formalism.

The chemical interactions modify this picture only slightly: They tend to cause a slight
asymmetry in the excess enthalpy variation with x about x = 0.5 and to shift the overall curves.
For Gal1 lnxAs, the asymmetry causes the features on the low-x side to have higher energies
than the corresponding ones on the high-x side. We have demonstrated that the absolute shifts
of the chemical excess energies are positive for the anion-substituted alloys and negative for
the cation-substituted alloys (Chen and Sher, 1985b). Hence, for the same lattice constant
mismatch, a cation-substituted alloy will have a smaller mixing enthalpy than an anion-
substituted alloy.

The configuration-dependent electron/electron Coulomb interactions (van Schilfgaarde,
Chen, and Sher, 1986) are not included in the results reported here. These interactions make
contributions comparable to those driven by the bond-length differences discussed previously
and, therefore, will modify the numerical results significantly. These terms are driven by
polarity differences between the alloy constituents in contradistinction to the customary bond-
length difference. The essential feature of Coulomb interactions is the configuration-
dependence of spatial charge fluctuations. Because the Coulomb energy is nonlinear in the
charge density, fluctuations always increase the energy. This can be partially compensated by
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the long-range Madelung energy originating in a coherent sum of alternating charges.
Configurations that minimize the combined effect are of lowest energy. The random
configuration is always of higher energy, mainly because of the weakening of the Madelung
energy. Therefore, both ordered compounds and spinodal decomposition are favored by this
interaction relative to random alloys. We have demonstrated that in the bond-length-matched
Gal-,AlxAs alloy, the ordering observed by Kuan, et al. (1985) can be explained by these
electron/electron Coulomb terms.

Others (e.g. Czyzyk et al. 1986; Srinivastava, Martins, and Zunger, 1985) have calcu-
lated the concentration variation of microcluster energies ej by treating the various types of
clusters as units of different periodic structures. These workers allow the central cation in each
A4 -jBiC (j = 0,1,2,3,4) microcluster to relax into its minimum-energy configuration and then
compute the energy of the cluster ej(v) as a function of cluster volume v. They then assign
cluster energies at each composition x by identifying the v to be that of the average lattice, fol-
lowing Vegard's rule. This procedure leads to negative cluster energies for the compositions
where the cluster volume just fits the average alloy volume per cluster, so these special clusters
experience no strain. In the plot of ei versus x in Figure 2(a), this would cause the A(3)B(1)C,
A(2)B(2)C, A(1)B(3)C cluster energies to be negative for x = 0.25, 0.5, and 0.75, respectively.
In addition, the constraint that each type of cluster has the same volume at a give concentration
accentuates the differences between cluster energies relative to those we calculate and resemble
the stiff lattice case in Figure 2(b). In our procedure, each cluster is attached to an effective
alloy medium and allowed to relax to its minimum energy configuration. The effect of con-
straining the volume can be seen by comparing Figures 2(a) and 2(b). Thus, there are two
major differences between our 8j versus x curves and those of other groups. Even for cases
with a bond-length mismatch, some of their cj values are negative for a collection of special
concentrations corresponding to possible stoichiometric compounds for which the periodic lat-
tice can fit together without appreciable strain. Furthermore, their ej values vary much more
steeply with x reaching somewhat larger values and having a much larger overall excursion,
because the various cluster volumes are each forced to equal the average lattice volume. This
causes their free energy versus composition curves at a given temperature to have a much
sharper structure than ours with three deep minima at x = 0.25, 0.5, and 0.75, similar to the
results in Figure 3 (Guggenheim, 1952; Kuan et al., 1985), which we could generate only in a
quite unphysical circumstance.

There is merit in both approaches. We suspect that their results are correct, but only in a
very narrow composition range where the periodic structures exist and near the critical
order/disorder transition temperature. The models reported to date assign to a microcluster
only the local strain energy. However, there is also a long-range strain field produced in the
surrounding medium by a cluster that does not fit exactly into the lattice. If there are many
misfitting clusters, then the long-range strain fields from each add incoherently, and the net
results is to produce the average lattice spacing, but no additional nonlocal energy need by
counted toward each cluster. However, when the misfit cluster density is small, then the
incoherence is incomplete and the long-range strain fields are likely to be important. Thus,
starting from a perfectly ordered compound, e.g. ABC 2, the first small deviation in the compo-
sition from the ideal stoichiometry will introduce large (local and long-range) strain fields,
which will cause the composition variation of the free energy around these special points to be
even more rapid than anyone has yet calculated. Accordingly, the net result is expected to be
low-temperature excess-free-energy curves that resemble those in Figure 1(b), but with sharp

7
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negative spikes superimposed at the special compositions. This conjecture remains to be
confirmed by calculation and experiment.

The other major class of phenomena that can introduce correlations are those that split
the degeneracy of the clusters. The easiest ones to picture are coherent strains produced by a
uniform externally applied stress. This can happen, for example, when an epitaxial layer of an
alloy is grown on a lattice-mismatched substrate. Then, for example, for a stress in the <110>
direction, a four-atom nj(B) = 2 cluster will have different energies if the two B atoms or two
A atoms have positive displacement components parallel to the <110> direction. When the
stress is large enough to drive the energy of the preferred orientation down well below those of
other clusters, then it is possible for compounds with long-range order to have low free ener-
gies. This phenomenon has recently been observed in the growth of GeoSi0 .5 on a silicon
substrate, where an ordered compound, rather than a random alloy, was found (Bevk et al,
1936). Stresses produced by temperature gradients behind a growth front can cause similar
effects. In this discussion, we have recognized the potential importance of applied stresses and
temperature gradients in driving microcluster population distributions. However, a comprehen-
sive quantitative theory must still be formulated.

We have discussed the possibility of spinodal decomposition into domains. A given
domain can be nearly a random alloy surrounded by other domains with differing compositions
or ordered compounds depending on the constituent materials, the concentration, and growth
conditions. However, there remains the question of how the domains fit together and their
relative size. We cannot offer complete answers to these questions, but we can identify many
phenomena that influence the outcome. The thermodynamics discussed here tell us about the
compositions and structure of the favored domains. Clearly, if there is no inhibition to atom
motion or annealing times are sufficiently long for equilibrium to be reached, the system will
separate into two domains, one of each of the favored types, and the relative amount of each
type will be given by the composition-lever rule applied to the free-energy curve. However, if
there are constraints on the distance atoms can travel, then there may be other local-free-energy
minima determined by a competition between the statistical effects discussed previously and
long-range strains produced as the alloy forms a domain structure. Because the different types
of domains have different lattice constants when space in some regular array is filled with
them, they will exert stresses on one another. The preferred configuration will be one that
minimizes the net free energy, now including the extra mechanical domain/domain interactions.

The calculation by Muller (1984), in which he demonstrates that the fluctuations in the popula-
tions of clusters inherent in a random alloy are suppressed by strain fields in lattice
mismatched systems, is a precursor to this kind of theory. A regular array of domains of
ordered compounds surrounded by a random alloy has been reported recently by Stringfellow
(Jen, Cherng, and Stringfellow, 1986).

A number of nonequilibrium growth processes are proving to be valuable additions to
our materials preparation methods. Included in this category are all growth methods in which
the substrate is held at a temperature well below the melting point of the growing material, e.g.
molecular beam epitaxy (MBE), metal/organic-chemical-vapor deposition (MOCVD), and vari-

%, ous energy-assisted epitaxies (EAE) (Green, 1983; Bicknell, Giles, and Schetzina, 1986). The
EAE methods are those in which some form of energy, e.g. laser light or ion bombardment, is
supplied to the growing surface. Even without energy assistance, local bonding arrangements
in the layers just beneath the growth surface can reorder to attain local-minimum-free-energy

',.
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configurations driven by the energy released when the new atoms arrive and bond, typically a
few eV per atom. If one thinks in terms of an effective growth surface temperature that deter-
mines the nature of the order/disorder phase state of the material, then in normal MBE and
MOCVD Teff probably lies below the melting temperature Tm. For liquid-phase epitaxy, one
has Tff = Tm, while for EAE, one has TaT > Tm. This single Teff parameter model is undoubt-

ably an oversimplification, but it serves to establish an order among the trends of a wide range
of experimental recently reported results. When Ter is small (MBE and OMCVD), then corre-
lations are high, ordered crystals and crystals with ordered arrays of domains can occur. When
Tef = Tm, then correlations are smaller, and depending on the alloy and composition, more
nearly random arrangements or normal spinodal decomposition are more likely. When
T,) t : Tm, then it is possible to grow materials in the form of random alloys that do not exist
in equilibrium. While these materials are metastable, they may still be useful and open a whole
new treasure trove to device science.

9
U I

, '



III COULOMB INTERACTIONS

This section presents a new mechanism for the alloy mixing enthalpy: the configuration-
dependence of the Coulomb electron/electron interaction. Although we have formulated the
problem in tight-binding theory, it can (at least in principle) be formulated in other ways. In
the tight-binding theory, the driving force for the interactions are the bond polarity mismatch,
in contradistinction to the customary bond length mismatch, which the Keating model charac-
terizes. This interaction can be significant in lattice-matched materials, and, indeed, our numer-
ical estimates (which are quite difficult to obtain reliably) are approximately the correct size to
explain the now-famous experimental work of Kuan et al. (1985) on AlGaAs. The essential
feature of Coulomb interactions is the configuration-dependence of charge fluctuations.
Because the Coulomb energy is nonlinear in the charge density, fluctuations always increase
the energy. This can be partially compensated by the long-range Madelung energy originating
in a coherent sum of alternating charges. Configurations that minimize the combined effect are
of lowest energy. The random configuration is always of higher energy, mainly because of the
weakening of the Madelung energy. Appendix A, a reprint of van Schilfgaarde, Chen, and
Sher (1986), published in Physical Review Letters, provides more details.
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IV STRUCTURAL PROPERTIES OF COMPOUNDS AND ALLOYS

A. Introduction

Harrison (1980) has devised in an elegant way to obtain the total energy for tetrahedral
semiconductors in tight-binding theory without recourse to integrations over the Brillouin zone.
His approach starts with the bond orbital approximation, which treats the electronic structure of
the solid in terms of two-center bonds, neglecting coupling between bonds and neighboring
antibonds. These corrections can be restored in a systematic way in perturbation theory;
Harrison terms these corrections metallization, because they are responsible for the delocaliza-
tion of the electrons and are proportionally larger for heavier elements. The bond orbital

Sapproximation is especially attractive in the study of alloys because there is, strictly speaking,
no Brillouin zone. In particular, we are interested in the elastic constants of the alloy.

In addition to the bond orbital approximation-a shortcut to the more intricate (and
necessarily numerical) integration over the Brillouin Zone-Harrison has developed a theory of
tight-bindin g matrix elements, arguing that they scale universally with free-electron bands and
vary as l/d . These are purely attractive, and he adds an empirical two-body repulsive term to
stabilize the crystal at its equilibrium spacing. This is postulated to vary as 1/d4. With these
matrix elements and the repulsive term, he can calculate a wide range of structural properties in
the bond orbital approximation.

Harrison's analysis, while remarkable in its simplicity, yields semiquantitative predictions
of the elastic constants. This study summarizes a detailed analysis of the elastic constants in
the bond orbital approximation, showing the apparent origin of the principal errors of the
theory, and distinguishing the errors inherent in the bond orbital approximation and the physi-
cal approximations of the tight-binding theory.

The bond orbital approximation is found to be a reasonably accurate mathematical dev-
ice; however, it does lead to inaccuracies of order 20 percent in the most polar materials. The
most severe error lies in the assumed form of the two-body repulsion; this is not surprising,
because it is the least well established aspect of the theory. The probable origin of the error in
the two-body repulsion is the neglect of orthogonalization of the valence s and p orbitals to
neighboring core wave functions. In the few cases where we have calculated the s-p orbital
core interaction, the bulk modulus has agreed with experiment to within 10 percent The
analysis is now being finished, and this work will be published in Physical Review.

B. Analysis

It is always possible to construct a tight-binding theory that agrees well with experiments
(although quite probably one without physical foundation), by adjusting a sufficient number of
parameters. One of the most elegant aspects of Harrison's analysis is its lack of adjustable
parameters, in spite of its ,xtreme simplicity. The only empirical aspect of the theory is the

I I
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assumed form of the two-body repulsion V0 , which is presumed to vary as l/d
4. This analysis

retains all of the matrix elements of Harrison's analysis (free-electron term values for the diag-
onal and universal nearest-neighbor for the off-diagonal), discarding only the assumed form of
the two-body repulsion. For the analysis of the elastic constants, we specify V0 only by
coefficients of a Taylor series,

Vo(d) = Vo(do) + Vo'(do)(d - do) + 'A V0"(do)(d - do)2  (1)

where the linear term is fit to the equilibrium spacing and the quadratic term to the bulk
modulus. As mentioned earlier, the principal contribution to the bulk modulus originates in the
orthogonalization of the valence wave function to cores on neighboring sites. p.

Harrison (1983) discusses the analysis of the bond orbital approximation in detail. We
use that analysis here with the above exte.nsion to the repulsive two-body interaction V0 .

Of the three elastic constants, the simplest to analyze is the bulk modulus, as it entails
only purely radial forces (a simple compression of each bond). In the bond orbital approxima-
tion, the energy of a bond is

Eb=C + + 2V 2
2 + V3

2 + VO (2)

where e. and e, are the atomic terms values of sp3 hybrids on the anion and cation, respec-
tively, and V3 = (e, - E.)/2. It is sometimes convenient to define the quantities, following
Harrison,

= 3 (3)
,rV 22 + V 32 .

The "bond force constant," k, is related to the bulk modulus B by

k = d -2Eb 43"13 (4)

Evaluated from Eq. (2), k is

k -4V 2
2 (5V 3

2 + 3V 2
2) + Vo" (5)

do2( V 2
2 

+ V32) 2

There are additionally metallization corrections, but these can always be implicitly included in
the two-body repulsive term. For the present analysis, V0" is fit to the measured bulk modulus.

12

-Nr-



Next, we examine the elastic constant c11-c 1 2 . This distortion entails only a bond-angle
mismatch of Figure 4; it involves no changes in bond length. Because none of the volume-
dependent quantities enter, our analysis follows exactly that of Harrison (1983). The result is,
in the bond orbital approximation,

c11-c 12 = V3oi('3VspG + 3Vpp - 3Vpp)/4do3  (6)

yB

(a) Wb

IN

FIGURE4 TOTAL ENERGY AS A FUNCTION OF d
(a) A single tetrahedron under a twist distortion. The neighbors at upper left and lower right
are below the plane of the figure, the others above. The displacements are in the plane of the
figure. (b) The misalignment of the two hybrids forming a bond, with 0 - tan 0 = u/d.

Metallization corrections are important in the heteropolar compounds; Harrison (1983) showed
that there is an important interbond metallization correction, whose effect is to alter the above
result by a multiplicative factor ctc3.

Finally we turn to the last independent elastic constant, c44. It is the most difficult to
handle properly because the total energy must be minimized with respect to two variational
parameters, the Kleinman internal displacement parameter and (because the hybrid orbitals are
no longer all equivalent) the rehybridization of the orbitals. We choose the geometry shown in
Figure 5. The elastic energy takes the form

E = (A, u' 2 + A 12V " + A13U' + A22)'
2 + A23Y + A33)u 2  , (7)

where the variational parameters U' and y are specified in Figure 5, and the A,,s are
coefficients that involve the tight-binding matrix elements. They are:
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FIGURE 5 GEOMETRY WITH WHICH TO ANALYZE THE c4 4 DISTORTION

The atoms in the basal plane are frozen; the top atom is pulled vertically by u in the figure.
The displacement u'ud of the central atom is not determined by symmetry, but must be
minimized with respect to the total energy; the Kleinman internal displacement parameter
is linedrlv related to u'ud. Also, the hybrid pointing to the top atom is no longer equivalent
with hybirds pointing down to the basal atoms. Because of this, the basal hybrids can ex-
change some of their sp character with the vertical hybrid; this too is determined variationally.
In one limit, the rehybridized orbital continues to point directly along the bond. That rehy-
bridization angle is illustrated in Figure 5(b) as "Ymax' The rigid hybrid approximation sets 'y
to zero; the variationally determined gamma is typically 1/3 "rmrax in covalent materials.
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[(16-3Vs + 48VppCF - 48Vpp) o 3 + 12do2k]
A91 = + (8)

A22 = 2(7'43VP O + 3V - 3VppM) (9)

A 33 = do2 k (10)

A 2 =p 12Vpp -6Vpp - 18V 2)/3 (11)

A 3 = -2d 2k (12)

A23 = -642oC[j3(1 + oP 2)(Vsp + Vpp, + V2) - 3aoap AV1] (13)

The coefficients A 12 and A22 are too complicated to display compactly in the heteropolar com-
pounds and are only shown here in the covalent case. As in the elastic constant cjj-c 1 2, the
portion of All proportional to ot, 3 should be proportional only to of, in the bond orbital approx-
imation; the same interbond metallization corrections in cnl--c 12 apply here. The remaining
important metallization corrections are included implicitly as modifications to the two-body
repulsive term.

Table I shows the calculated elastic constants for the elemental semiconductors. It is
seen that both c11-c 12 and c44 are well predicted, and that the Kleinman internal displacement
parameter agrees considerably better with experiment than does Harrison's analysis. This
shows that the principal error in Harrison's formulation of c44 is due to his form of Vo. The
remaining errors can be taken as a measure the uncertainty of the universal matrix elements.
The matrix elements, for example, were obtained with a peripheral s state (which, however,
was not included in the calculation of the elastic constants; its effect is to weaken Vsp) . The
elastic constants c 1 1-c 12 and c44 increase by about 5 percent if VP is fit instead without a peri-
pheral state.

Alternatively, this good agreement with experiment shows that matrix elements do scale
nearly as free electron matrix elements from one material to another. However, this analysis
tells very little about the variation of the matrix element with bond length for a given material
(also assumed by Harrison to vary as I/d2). We have also formulated the theory using the form
of the universal matrix elements, but allowing for an arbitrary variation with bond length
(specifying it by a Taylor series, as in the V0). c44 exhibits an extremely weak dependence on
the first derivative of the matrix elements, aV 2/M and is completely independent of the second
derivative.

15"
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Table 1

CALCULATED ELASTIC CONSTANTS

Numbers in parentheses are corresponding
experimental values

Material D B c 11 12  C4 4  Kleinman

C 1.54 44.20 67.10 47.37
(1.54) (44.20) (95.10) (57.70)

Si 2.35 9.78 8.11 6.95 0.58*
(2.35) (9.78) (10.20) (7.96) (0.63, 0.73)

Ge 2.44 7.52 6.72 5.65
(2.44) (7.52) (8.06) (6.71)

*Harrison is 0.43

For the ionic semiconductors, the analysis of c44 becomes strongly dependent on several
rather uncertain quantities, such as the difference in V1 between the cation and anion. This
quantity is quite sensitive to the atomic term values used, a quantity that is not known well in
any case.

To avoid this difficulty, we simplify the above analysis to the "rigid hybrid" approxima-
tion: we set y in Eq. (7) to zero, and thus require that the four hybrids be rigid. This overesti-
mates the force constants in all cases, but eliminates the troublesome coefficients A 12 and A 2 2 ,

and the strong dependence on V1. The errors introduced in the covalent case are not severe, as
Table 2 shows. It is also seen that c11-c 12 and c,4 exhibits reasonably good agreement with
experiment, but overestimate somewhat the dependence on polarity. This is directly attributable
to the bond orbital approximation itself, as the bond orbital approximation tends to overesti-
mate the polarity in ionic materials [Berding, unpublished work]. We obtained the polarities by
numerical integration over the Brillouin zone, and re-evaluated the elastic constants substituting
these polarities instead of those calculated by the bond orbital approximation. The resulting
elastic constants, shown in Table 3, exhibit small and consistent departures from experiment.

The agreement overall is excellent and establishes strong experimental support for both
the bond orbital approximation and the universal tight-binding theory.

The extension of this theory to alloys involves appreciation of the fact that there are dis-
tortions of each cluster in the alloy because their volume does not match the average volume
per cluster of the alloy medium. As a consequence, the local bonds in the cluster are strained.
Thus, the elastic moduli correspond to responses to stresses about the prestrained positions.
Moreover, there is a long-range strain field in the medium caused by each cluster. It is well
known that if a segment of an elastic medium is removed and replaced by one of a different
size, then the net volume change of the sample is greater than the difference in volume
between the removed and replaced segments. Therefore, there is both a core and a long-range
contribution to the modification of average elastic constants in a medium. The long-range con- a.

tribution is complicated by interactions among the strain fields produced by different clusters.
We are attempting to sort through the problem at present.
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Table 2

ELASTIC CONSTANTS: RIGID HYBRID APPROXIMATION

d B CII- 12  C4 4

Material (A) cxp (1011 erg/cm3 ) (1011 erg/cm3 ) (10" erg/cm 3)

C 1.54 0.00 44.20 67.10 57.12
(1.54) (--) (44.20) (95.10) (57.70)

Si 2.35 0.00 9.78 8.11 9.34
(2.35) (--) (9.78) (10.20) (7.96)

AlP 2.36 0.52 8.60 4.91 6.52
(2.36) (--) (8.60) (5.90) (6.15)

AlAs 2.43 0.52 7.73 4.25 5.71
(2.43) (--) (7.73) (6.16) (5.42)

AlSb 2.66 0.48 5.93 2.94 4.08
(2.66) (--) (5.93) (4.50) (4.16)

GaP 2.36 0.50 8.87 5.17 6.81
(2.36) (--) (8.87) (7.88) (7.05)

ZnS 2.34 0.65 7.80 3.66 5.16
(2.34) (--) (7.80) (3.90) (4.62)

GeGe 2.44 0.00 7.52 6.72 7.49
(2.44) (-- (7.52) (8.06) (6.71)

GaAs 2.45 0.50 7.48 4.25 5.65
(2.45) (--) (7.48) (6.48) (5.92)

ZnSe 2.45 0.67 5.95 2.68 3.83
(2.45) (--) (5.95) .3.22) (4.41)

GaSb 2.65 0.44 5.63 3.20 4.25
(2.65) (--) (5.63) (4.82) (4.32)

ZnTe 2.64 0.68 5.09 1.79 2.73
(2.64) (--) (5.09) (3.06) (3.12)

lnP 2.54 0.59 7.25 2.88 4.26
(2.54) (--) (7.25) (4.46) (4.60)

InAs 2.61 0.59 5.80 2.52 3.64
(2.61) (--) (5.80) (3.80) (3.96)

InSb 2.81 0.54 4.66 1.98 2 88
(2.81) (--) (4.66) (3.02) (3.02)

CdTe 2.81 0.73 4.24 1.08 1.76
_ _ _ (2.81) (--) (4.24) (1.68) (1.99)
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Table 3

L

ELASTIC CONSTANTS: RIGID HYBRID APPROXIMATION
WITH CORRECTED POLARITIES

d B C 1 _1 - 12  C44

Material (A) oxp (1011 erg/cm3) (10" erg/cm 3) (10" erg/cm 3)

C 1.54 0.00 44.20 67.10 57.12
(1.54) (--) (44.20) (95.10) (57.70)

Si 2.35 0.00 9.78 8.11 9.34
(2.35) (--) (9.78) (10.20) (7.96)

AlP 2.36 0.43 8.60 5.84 7.29
(2.36) (--) (8.60) (5.90) (6.15)

AlAs 2.43 0.40 7.73 5.32 6.60
(2.43) (--) (7.73) (6.16) (5.42)

AlSb 2.66 0. 5.93 3.70 4.76
(2.66) (--) (5.93) (450) (4.16)

GaP 2.36 0.39 8.87 6.22 7.66
(2.36) (--) (8.87) (7.88) (7.05)

ZnS 2.34 0.57 7.80 4.62 6.06
(2.34) (--) (7.80) (3.90) (4.62)

GeGe 2.44 0.00 7.52 6.72 7.49
(2.44) (--) (7.52) (8.06) (6.71)

GaAs 2.45 0.35 7.48 5.40 6.58
(2.45) (--) (7.48) (6.48) (5.92)

ZnSe 2.45 0.56 5.95 3.77 4.82
(2.45) (--) (5.95) (3.22) (4.41)

GaSb 2.65 0.29 5.63 3.92 4.84
(2.65) (--) (5.63) (4.82) (4.32)

ZnTe 2.64 0.55 5.09 2.66 3.63
(2.64) (--) (5.09) (3.06) (3.12)

InP 2.54 0.47 7.25 3.81 5.20
(2.54) (--) (7.25) (4.46) (4.60)

InAs 2.61 0.43 5.80 3.56 4.61
(2.61) (--) (5.80) (3.80) (3.96)

lnSb 2.81 0.35 4.66 2.73 3.59
(2.81) (--) (4.66) (3.02) (3.02)

CdTe 2.81 0.59 4.24 1.76 2.57
(2.81) (-- (4.24) (1.68) (1.99)
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V ANGULAR DEPENDENCE OF TIlE HARDNESS

We have begun to incorporate anisotropicity into a theory of hardness in which the hard-
ness is determined by the interaction energy among dislocations generated by an indentation
(Sher, Chen, and Spicer, 1985). Several aspects of anisotropicity have been observed experi-
mentally and are being addressed in our study:

(1) In fcc, diamond, and zincblende structures slip is observed to occur most often on
{111} planes in the J110> directions. The effective shear coefficient, G, which
enters into our theory of hardness should correspond to this slip system. Duncan
and Kuhlmann-Wilsdorf (1967) have derived an analytic solution for the effective
strain coefficient for the { Ill } <110> slip system. Based on this slip system, the
picture of the dislocation configuration in our theory of hardness needs to be
modified, so for a given orientation of the indentor slip is permitted only in the
preferred directions. Then, the lowest-energy-dislocation configuration needs to be
found with this extra constraint to find the lower bound on the hardness.

(2) In germanium and lnSb, the microhardness has been observed to vary from one
crystalographic plane to another, with (11) surface the hardest, (110) the softest.
The observe increase in hardness from the (110) to the (111) plant is 15 percent in
germanium, but only 5 percent in InSb (Ablova, 1961; Ablova t:nd Feostiskova,
1963). As discussed above, the picture of the dislocation configuration generated
by the indenter needs to be modified; the minimum energy dislocation pattern will
differ from the (111) to the (110) face. For example, the (110) face has two slip
planes which are perpendicular to the surface and two slip planes at 350 angles to
the surface. The (I11) surface, in comparison, has three equivalent slip planes at
70.5' angles to the surface. In addition, the (111) surface is itself a slip plane.

(3) The scratch hardness on the (11) surface of lnSb shows a three-fold symmetry.
The maximum and minimum occur in <112> directions. The implication of the
three-fold symmetry is that in the <1 12> directions, a scratch in one direction will
result in a different hardness than scratching in the opposite direction. Scratch
hardness, therefore, necessarily involves a component of force in the plane of the
surface, along the scratching direction. We are not currently addressing scratch
hardness.

IJ
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VI VACANCY-FORMATION ENERGY

The present status of our efforts to understand vacancy-formation energies is contained in
the preprint of a paper attached as Appendix A. We are currently generalizing the results to all

semiconductor alloys and considering a number of final states for the removed atoms.
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A tight-binding theory is derived for Coulomb electron-electron interactions in tetrahedrally
coordinated pseudobinary alloys of the form A05B0 C. Coulomb contributions to the mixing
enthalpy are driven by the bond polaritv mismatch, as distinct from the bond length mismatch cus-
tomarily considered. The Coulomb energy shows a strong dependence on the alloy configuration,
which arises from the configuration dependence of charge fluctuations. The mixing enthalpy is of
order 0.10 eV, commensurate with that of the strain contribution customarily considered.

PACS numbers: 64.80.-v, 64.75. +g. 81.30.Hd

On a zinc-blende lattice, the energetics that give rise the strain contribution and varies in proportion to the
to nonrandom distributions of alloy constituents have square of the bond length mismatch, (Ad) 2. [There
long been associated with incoherent strain fields due are also contributions in proportion to (AZ)(Ad).
to the lattice mismatch of the constituents. However, They are not considered here.] Ueff- Keff is calculated
there is recent experimental evidence' that the cations for the A0.5B0.5C in three configurations: (a) a ran-
in AIGaAs exhibit long-range order. Also, a 7-meV dom alloy, (b) the pure ACand BCmaterials, and (c)
mixing enthalpy has been measured in HgCdTe. Both an ordered phase in which the two alloy constituents A
materials are lattice matched, and this indicates that at and B lie in alternating "100] planes. In the cation-
least one alternative mechanism plays an important substituted alloys, U/err- Keff is near zero for both of
role in the alloy mixing enthalpy. Presented here is the ordered configurations considered, but - 1.5 eV
the first explicit calculation of the electron-electron for a random configuration, leading to a positive con-
Coulomb contribution to the mixing enthalpy in tribution to the mixing enthalpy. Since AZ can be of
tetrahedrally coordinated pseudobinary alloys of the order 0.2, the Coulomb contribution to the mixing
form A0 5B0 5C It is found to be large and quite com- enthalpy can be of order 50 meV, quite commensurate
parable to the energies associated with lattice mis- with the strain contribution.
match. We consider here the configuration depen- We calculate the Coulomb contributions in the bond
dence of the diiect (Hartree) term in the electron- orbital approximation, which neglects coupling be-
electron Coulomb interaction, which can be under- tween bonds and neighboring antibonds, 3 and allows
stood in terms of charge fluctuations driven by the us to treat the charge transfer of each bond indepen-
differing potentials of the A and B atoms. dently. This approximation is not essential but simpli-

Coulomb interactions2 are formulated in the tight- fies the analysis, as it allows us to calculate the net
binding bond orbital approximation,3'4 in terms of an charge transfer at a particular site as a sum of charge
effective intra-atomic contribution UfT and an inter- transfers from each bond. We include only the direct
atomic "Madelung" contribution Kerr. Both UefT and terms in the Coulomb interactions.5 Harrison 2 has
Krr depend on the particular configuration of the al- studied Coulomb interactions in the pure crystal, and
loy, and the net interaction takes the form has argued that their principal correction to the classi-

cal tight-binding Hamiltonian is to add a correction
(UfT- KfTf(,)Z . (1) proportional to U to the site energy, compensated by

an interatomic "Madelung" energy K.
where AZ is half the difference in charge transfer in To treat the intra-atomic U, consider an isolated
the two alloy bonds, determined by the bond polarity atom. Because of the electron-electron interaction the
difference. Equation (i) makes a contribution to the potential varies with the charge Z, and the energy Eis
mixing enthalpy in proportion to (AZ) 2 in contradis- nonlinear in Z. The coefficient to the linear term of
tinction to the customary treatment which focuses on an expansion of E(Z) about Z-0 (corresponding to

4%
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the neutral atom), - e- (aE/8Z)o, is in Hartree- with a correction for metallization, 3, the second-order
Fock theory the term value, since it is the change in coupling between bonds and antibonds.
energy with respect to occupation. We account for the We consider an A05B0 5C alloy and define the
Coulomb interaction with an energy dependence charge transfer in the A C and BC bonds as ZA and ZB,

respectively, and define the virtual-crystal average
E(Z) -2+ n (2) m-(Z+Z9)/2 and fluctuation AZ--(Z-Z)/2.

where All configuration dependence is most easily interpret-
ed in terms of charge fluctuations; it is for this reason

U - e' f d3r d3 r2 4
2 ( r )( l/r12 ) 2

( r 2 ). that the configuration dependence takes the form Eq.
(1). In the virtual crystal, each site has an average

(Seecharge There are no charge fluctuations, and the
cal evaluation of U and K.) Substituting Eq. (2) for Coulomb energy is that of the average material, U*Z 2.
the usual Hartree-Fock term values into the bond or- In the bond orbital approximation, every A atom has
bital approximation leads to Coulomb corrections of the same charge, as does every B atom. The C atom
the form has one of five charge states, depending on the

( + Knumber of A and B atoms surrounding it. Because
2 +there are only a finite number of charge states, both

the intra-atomic and interatomic "Madelung" energy
per atom pair. Here Z is the cation-anion charge of the entire lattice can be obtained for any configura-
transfer, and U. and U, are the intra-atomic electron- tion of alloy atoms. The Coulomb energy per atom
electron Coulomb repulsion on the anion and cation pair of the separate compounds AB and BC can be
sites, respectively. K is the interatomic direct term, written out of hi- id,

S.r, the "Madelung" energy - 1.64e 2/d for bond length d,
if the atomic charge distributions do not overlap (see Eseparate phases =- U %2( ZA + Z)
Appendix).

If the solution is not carried out self-consistently, = U*[Z 2+ (SZ)2I, (4)
Eq. (3) adds directly to the total energy. Solved self-
consistently, the Coulomb correction is, to second or- and differs from that of the virtual crystal because
der in U, U*Z2( + 4a 3U'/I V21), where the covalen- each charge fluctuates by ±AZ relative to that of the
cy a, and the hybrid matrix element V2 are defined as virtual Lrystal.
in Refs. 3 and 4. Because U*1 V2 is small, we drop We next consider a random alloy, choosing a
self-consistency corrections and carry out the analysis cation-substituted alloy to facilitate discussion. The
to first order only. In practice, Z for each bond is cal- Madelung energy is obtained by summing of the
culated from Harrison's bond orbital approximation Coulomb pair potentials over all sites A and v. It

differs from that of the virtual crystal by

where*P(1A) is the probability of site . having charge these five states. In a random alloy, the probabilitiesI 4 6 4 Ir'

Z,(i) and P,'f,(v) is the conditional probability of site P1 of finding these states are -, -, -L, ,. and -,
v having charge Zj when Z(A) is specified. When respectively. The conditional probabilities P j, and
P,'1(v) is independent of i, the sums over i and j fac- Psj, of finding cation neighbors of type .4 and B are
tor and the quantity in brackets vanishes identically. i/4 and (4- i)/4.
Since in the bond orbital approximation the charges on Consider next the nearest anion-anion neighbors.
the alloy sublattice are statistically independent, the The separate probabilities of each anion possessing a
only correlated pairs are nearest-neighbor pairs and given charge state are statistically dependent for
second-neighbor anion-anion pairs (correlated through nearest anion-anion neighbors through the cation
their common cation). neighbor that they share in common. Given the

Considering first the nearest-neighbor pair (using a charge Z, on one site, the conditional probability of
cation-substituted alloy for notational convenience), finding a charge Z) on the neighboring anion site is
there are five possible anion charge states, which we mediated through the conditional probability of the
label i-0-4, signifying the number of cation neigh- common cation by PjI'=P 1,Pf,( +P 11Pj'1. The
bors of type A. The anion charge differs from the vir- intra-atomic contributions can be similarly summed
tual crystal by A Z, AZ12, 0, -AZ/2, and --AZ for relative to the virtual crystal as Y, PI[E( Z,) - E( )

2
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and the net Coulomb energy is

tl 7 , _ 1 U 4 e 2  1 2 e 2  + U'(
18Z2+ 8 2 'c 4 d + 16 (8/3)/2 d  )

Again, each term has a simple interpretation in terms of charge fluctuations. Fluctuations on the anion sites are 4

as large as in Eq. (4), this reduces the intra-atomic anion and the nearest-neighbor interatomic contributions to L,4.
and each of the twelve nearest-neighbor anion-anion fluctuations to -L of Eq. (4). ""

We finally consider a sublattice of cations which are ordered by arrangement of the A and the B atoms in alter-
nating layers in the I1001 planes.1 There is an additional Madelung energy in the A -Bsites (wl-; h we calculate by
an Ewald sum), but no charge fluctuation on the C site since every C site is in the same environment. The
Coulomb energy is then

U Z 2 1 } { L. 1.59 "2  (

The difference in Coulomb energies of the three
configurations considered, Eqs. (4), (6), and (7), It takes a rather long correlation length for the lattice
differ only in terms due to charge fluctuations, their to gain a substantial portion of the Madelung
difference taking the form Eq. (1). Numerical esti- "enhancement" from a coherent sum of ordered alter-
mates (see Appendix) of the effective U's and AZare
shown in Table 1. In the cation-substituted alloy, the
Coulomb energy of the random alloy is approximately TABLE I. Numerical estimates of the Coulomb energies.
1.5(AZ )2 eV larger than that of the separated materi- in electronvolts, in three configurations of selected alloys
als. When AZ is 0.2, the mixing energy is 0.06 eV-a A05B0 5C, as outlined in the text. U, and U are the intra-
large mixing energy. In the anion-substituted alloys, atomic interactions used in the calculations, and U* is given ...
the mixing energy is somewhat larger, 2.5(AZ) 2 eV. by Eq. (). The charge-fluctuation dependence in the
The generally higher energy of the random 5onfigura- Coulomb energy for the pure materials [Eq. (4)], the ran-
tion can be understood as a diminution in the inter- dom alloy [Eq. (6)1, and the ordered sublattice [Eq. (7)] are
atomic electrostatic energy. Without the long-range given by the columns U, U,,,, and U100, each column mul-

tiplied by (AZ). The mixing energy is thus AE= (L'raorder there is no Madelung "enhancement" of the -U°)(AZ) 2 . For the A05B05Ccomposition, the "mixing
electrostatic energy gained from a coherent sum of al- enthalpy parameter" fl, is 4AE.
ternating charges.

In the cation-substituted alloys, the Coulomb ener- uo U. U. U100  (Iran AZ
gies of the two ordered configurations are indistin-
guishable within the accuracy of the theory. There is AlalP 6.48 0.92 0.35 0.27 1.72 0.03 AIInP 6.07 0.02 0.35 0.17 1.60 -0 17
apparently no significant penalty from the Coulomb in- Galnl' 6.26 9.92 0.36 0.27 1 67 -0.20 V
teractions, they do not prevent the ordered sublattice AIGalA 6.48 9.49 0.33 0.37 1.74 002
from being a stable configuration. The situation AIIn.A% 6.07 9.49 0.33 0.25 1.61 -0.17
changes in the anion-substituted alloys, where the or- (;alnAs 6.26 0.40 0.34 0.36 1.69 -0.19
dered sublattice has higher energy than the pure ma- AIGaSb 6 48 8.10 0.31 0.60 I 80 005
terials. The asymmetry in the anion-substituted and AIInSb 6.07 8.10 0.30 0.47 1.66 -0 16
cation-substituted alloys is due to the fact that the (;alnSb 626 8.10 0.31 056 1.74 -021
anion has larger intra-atomic Coulomb energy U of AIPAs 628 0.71 0.33 1.93 2.04 003
some 2 eV. In real cation-substituted alloys, kinetic GaPSb 6.67 8.98 0.32 1.60 270 019I n,u,,S b 5.89 8.77 0.33 1.80 2 68 0.13
barriers may favor the sublattice over the separate ma- lA0s 5.8 8.77 0.33 1.80 268 0.03

AIPS 6.28 8.98 0.33 1.9 2.04 0 16terials, especially if the energies are comparable. The AIh 6.8 .8 031 .0 260 06

path from an initial random configuration (as is rough- ALA.,Sb 6 28 8.77 0.30 1.63 263 0 13
ly the situation experimentally) to the pure materials Gal'As 667 0.71 0.35 1.04 2.04 003
(spinodal decomposition) becomes progressively more Gal'Sb 667 8.98 0.32 1.69 270 0 18
complicated as the correlation length increases, while (.aAsS1 6 67 877 0.32 1.64 2 63 0 15
this is not so for the ordered sublattice. Therefore, InI'As 589 9.71 0.37 2.13 300 003
when the energy of a random configuration is high in InOSb 589 8.9 0.34 1.87 275 0 17

comparison to the ordered configurations as it is here,

the ordered sublattice may be the favored configura- Zn('dTe 499 0.36 0.28 -0.08 1 25 -009
tion experimentally. This is particularly true in the ZnllgTe 490 9.36 0.28 -0.13 1.22 -001

(AI IKTe 473 0,18 0.26 -0.13 1.17 009
present case because the interactions are long ranged.
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nating charges. Thus the Coulomb interactions have mixing enthalpy of 14 meV.
in principle all of the ingredients to account for Appendix. numerical estimates of U and K.-The
the long-range ordering found experimentally in nonlinearity in E(Z), Eq. (2), arises from the poten-
Alo 5Ga05As.l However, our calculated value of AZin tial change due to the electron-electron Coulomb in-
Table I is too small to account for the ordering, this is teraction, but the wave functions will also relax be-
because the Hartree-Fock atomic term values that we cause of this change. One can estimate the importance
use for Al and Ga are so similar that this elementary of corrections beyond the direct Coulomb interaction
tight-binding theory cannot distinguish between Al U by comparing the calculated U to the difference
and Ga. It is quite possible however, that a more so- between the experimental ionizaticn potential and
phisticated tight-binding theory can explain the order- the electron affinity, i.e., [E(I)-E(0)]- [E(0)
ing found experimentally. This has not been explored. - E( - 1 ) 1. Harrison 2 obtained his values for U by in-

Finally, we remark on the role of Coulomb interac- terpolating experimental data on the first and second
tions in HgCdTe, a II-VI compound. ([lgCdTe is an ionization potentials. From calculated atomic wave
interesting case because it has a 7-meV mixing enthal- functions using a density-functional program,' we cal-
py but no significant lattice mismatch.) Usually a large culated U from the direct Coulomb repulsion in the
bond polarity difference coincides with a large lattice valence p orbital. The resulting values of U agreed
mismatch because the atomic size and the atomic term within a few percent with Harrison's tabulated values,
values are closely correlated. Hg is an exception to but overestimated slightly the variation with row and
this because its s state is deepened by relativistic ef- column. Table I shows the values of U obtained in
fects, and HgCdTe has a significant bond polarity this way.
difference. The Coulomb mixing enthalpy as estimat- Harrison used the same value of U in the solid. In
ed from Table I is 6 meV, 6 showing that the Coulomb the calculation of the Madelung energy, he neglected
energies are large enough to be responsible for the ob- the charge overlap, underestimating U- K by 2-3 eV.
served mixing enthalpy. In the present calculation it is essential that U and K

Most alloy calculations are carried ont in a cluster be calculated on an equal footing, and we have chosen
approximation, which divides the lattice into clusters here to approximate the charge density with a superpo-
and assigns an energy to each cluster that is taken to sition of free-atomic charges. In this way we retain the
be independent of the surrounding clusters. Because free-atomic U, but the charge overlap in any nearest-
the Coulomb interaction is long ranged on the scale of neighbor contribution to the interatomic interaction
a bond length, small clusters may in fact depend must be explicitly taken into account. In the present
strongly on the surroundings. Virtually all present-day work only the valence p orbitals are used to calculate
calculations embed clusters in either a virtual crystal or U. In a solid, unlike the atom, the occupancy of the s
a supercell to obtain cluster energies. This work indi- orbital also depends on the charge, and this would -'

cates that in many cases such an approximation may be need to be considered in a more complete formulation.
quite poor, particularly for small clusters. The small-
est cluster size that is reasonably configuration in- IT. S. Kuan, T. F Kuech, W. I. Wang. and E. L. Wilkie.
dependent has not yet been determined. Phys. Rev. Lett. 54, 201 (1985).

In conclusion, we have developed an elementary 2W. A. Harrison. Phys. Rev. B 31, 2121 (1985[
theory for the configuration dependence of Coulomb 3W. A. Harrison, Phys. Rev. B 27, 3592 (1983).
interactions in semiconductor alloys. Numerical calcu- 4W. A. Harrison. Microscience 3, 35 (1983) (published by
lations show that they make an important contribution SRI International).
to the mixing energy. They arise from the configura- 5A more rigorous treatment of the Coulomb interactions
tion dependence of charge fluctuations, and depend on would require evaluation of all Coulomb terms

bond polarity mismatch, and must be added to the .,- e2[ dr dr 2 0,,'( r,) , 7(r,)( l/r12 )'Jk( rli)t,) r. ).
lattice-mismatch energies customarily believed to be
responsible for ordering the alloy sublattice. and would also have to treat relaxation of the wave func-

We wish to thank W. A. Harrison for helpful sugges- tions as charge is added. C Huang. J A Moriarty, and
tions and for reading the manuscript. This work was A. Sher Phys. Rev. B 14. 2539 11976)1 hae shown that, at

supported in part by U.S. Air Force Office of Scientific least in a two-electron bond orbital approximation, by far the

Research Contract No. F49620-85-C-0023 and U.S. dominant corrections are the direct terms, and in the present
Office of Naval Research Contract No. N00014-85-K- work we consider only them.
0448. 6The calculated value is probably fortuitously close to the

experimental value, since the bond charge transfer apparent-
Note added.-An ab-initio linear-muffin-tin-orbital ly depends on the bond environment (K Haas, prisate com-

calculation was performed on AlAs and GaAs. The munication) reflecting a significant interbond coupling that
difference in anion-cation charge transfer was found to the bond orbital approximation neglects
be approximately 0.1, leading to a significant Coulomb 7j. P Desclaux, Comput Phys. Commun 1, 216 (1970)
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ABSTRACT

The cation and anion vacancy formation energies are calculated for HgTe, ZnTe and

CdTe and their alloys using a tight-binding cluster Hamiltonian. Neutral vacancies only have

been assumed and two final states of the removed atom have been considered; a free atom in

vacuum, and an atom on a (111) A or B surface. Corrections caused by rehybridization of the

dangling bonds and Coulomb energies resulting from charge redistribution have been included.

29.

%4

•(.°

29

L ,., .. % .2,., ,.,-,...-; .- .,.. .o.-.- ... ,-..rn . . .- ,. . . . - .. .. ., . . . . .-



I. INTRODUCTION

Vacancies affect many electrical properties in semiconductors; for example, they serve as

largely uncontrolled dopants and impact the electron and hole mobilities. Structural properties

are also sensitive to the presence of vacancies; dislocation formation and propagation, and self

and impurity diffusion depend on vacancy concentrations. Experimentally, the quantity most

measured is the vacancy activation energy AE,, which is the sum of a vacancy formation

energy AEv, and a vacancy migration energy AEm.

The theory of defect structures has advanced considerably in recent years, particularly

with the self-consistent Green's function technique (SCGF).' -3  While SCGF calculates the

difference in total energies accurately, e.g. the migration energy, the accuracy for the absolute

energy is not better than - 1 eV. In addition, SCGF would have difficulty dealing with semi-

conductor alloys because of the lack of translational symmetry in alloy systems. The simula-

tion of defects and their environments by clusters have not been completely successful in deter-

mining the energy levels in the gap; even for localized defect potentials, the defect wave func-

tions have not been found to be well localized within clusters of up to 71 atoms.4 Hence,

there is uncertainty in determining energy levels in the gap.

Many of the electrical and structural problems of HgCdTe are believed to originate from

vacancies; thus, understanding the causes for the high equilibrium vacancy density in this

material is important to understanding the behavior of this alloy. In this paper, we present a

theoretical model for the vacancy that not only gives good insight into the problem and lends

itself naturally to an extension to alloys, but also yields reasonable estimates for the vacancy

formation energies that can be compared with experiment. We have used a simple model to

calculate the vacancy energies in all tetrahedral semiconductors based on Harrison's tight-

binding theory,-,6  We have modeled the vacancy and its immediate environment using a small

cluster of atoms (out to the third shell) about the vacancy site. We consider two different final

,-.5 30
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states for the removed atom: (1) a quantity denoted the removal energy AE r, is the energy to

extract an atom from a bulk lattice site into a neutral, free-atomic final state and (2) the

vacancy formation energy, AE,(I 11), corresponds to a final state in which the atom ends on a

(Ili) surface. The interactions of the cluster eigenstates with the extended crystal are included

in second-order perturbation theory.6  By including the interactions of the cluster with the

extended crystal, we have in part eliminated the error introduced by describing the vacancy in

a cluster calculation.

II. CLUSTER CALCULATIONS

"" -~A. Removal energy

First, we calculate AEr, the energy necessary to remove an atom from the bulk crystal,

and put it into a free-atomic final state. The initial and final states are both modeled by a clus-

ter of atoms out to the third shell about the vacancy site, containing 104 and 100 hybrid orbi-

tals respectively. The cluster Hamiltonian matrix elements are based on Harrison's tight-

binding theory with universal scaling laws.6 The site-diagonal matrix elements in the hybrid

basis are

eha = (esa + 3e%2)/4 for an anion site, (la)

and

ehc 
= (esc + 3epc)/4 for a cation site. (lb)
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The matrix element coupling two hybrids on the same atom site are given by

V1 = (esa - ep')/4 for an anion site, (2a)

and

Vlc = (esC - epc)/4 for a cation site. (2b)

p "9
Finally, the matrix element coupling two hybrids pointing toward one another is given by the

hybrid covalent energy

V2 = -3.22 (h/md2). (3)

After diagonalization of the cluster Hamiltonian, the cluster eigenstates are coupled to the

bordering crystal bond-orbitals by second-order perturbation theory that corresponds to

Harrison's metallization. 6  The metallization of the hybrids inside the cluster are explicitly

included in the cluster diagonalization.

The removal energy is given by the difference between the initial- and final-state ener-

gies

AEr Ef - Ei  (4)
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where only energies that change upon the vacancy formation have been included. The initial-

state cluster energy is given by

E=N 2(e+~nL+Emt+V 5AEmet'E, = 2(e, + e, m ct  + AE(out) +  
0 (5)

%here e, are the eigenstates of te cluster Hamiltonian and i sums over the occupied states, and

Nh is the number of electrons in the cluster; this equals the number of hybrids in the initial-

,tare cluster. Hlere, et is the ,hift to the i h cluster eigenstate caused by metallization with the

crystal antibond orbitals at the cluster edges: AE m e t is the energy shift of the bordering crystal" out

bond orbitals from metallization, with the cluster antibonds coupling through an anion or cation

at the cluster edge. V0 is the repulsive energy between two hybrids in a bond and arises from

the overlap of the hybrids and core states on adjacent sites. 4V o is included in the initial-state

energy for the four central bonds that are broken on creation of a vacancy. The average eigen-

state energy of the cluster is used to determine the bond cohesive energy Ech. Then, V0 has

been adjusted to yield cohesive energies in agreement with experiment.

The diagonalization of the final-state cluster yields a set of Nh- 4 eigenstates. The lowest

(Nh- 4 )/2 eigensrates correspond to the occupied cluster states, the highest (Nh- 4 )/ 2 eigenstates

correspond to the unoccupied states, and the central four eigenstates correspond to the partially

occupied dangling hybrid states that are largely localized on the four dangling hybrid orbitals

pointing into the vacant site. Because we include out to the third shell of atoms about the

vacancy site, the degeneracy of the four branches of atoms is split into one A, and three T2

states. The energy of the final-state cluster is given by
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1+l +Nd

E -  2(e', + + (e + e', ) + AE'met (6)
=l I={Nh--

4
).

2
I1+ 1 out

Here, Nd is the number of electrons in the four dangling hybrid states and is 2 (6) for an anion

(cation) vacancy in a I-VI semiconductor. eatom is the energy of the valence electrons of the

removed atom in a free-atomic final state. All other terms are as defined for Eq. (5).

B. Vacancy formation energy

Removal energies should not be used as the energy parameters determining the vacancy

concentrations or diffusion coefficients, although they give a good qualitative measure of struc-

tural integrity. A more appropriate energy to use is what we have termed the vacancy formna-

tion energy; it corresponds to the energy required to remove an atom from the bulk and put it

on a free (111) surface where it can remake as many as three bonds. An accurate calculation

requires a good knowledge of the surface reconstruction. We suggest a simple way to estimate

the vacancy formation energy assuming only ideal surfaces.

Consider, for example, the 1l-VI crystal AB with nonreconstructed cation A and anion B

surfaces with some A (B) sites available on the A (B) surface. The dangling hybrids on the B

surface are either doubly or singly occupied, with an average of 1.5 electrons for each hybrid

state. Similarly, half of the dangling hybrids on the cation A surface will have one electron,

and half will have no electrons in them. Consider the removal of cation from the bulk: four

bonds are broken and six electrons are left to occupy the dangling hybrids on the four sur-

rounding anion hybrids. Each of the hybrids will be occupied by 1.5 electrons on average.

which is similar to the B surface. The hybrids of the cation removed to a cation surface will

be occupied by 0.5 electrons on average. Let the energy of the unit with three AB bonds con-

necting to a single A at a surface with an average of 0.5 electrons in the dangling bond be
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E(A) (which includes only the back-bond and metallization energies), and similarly define

E(B). Then, the vacancy formation energy for removal of a cation can be shown to be given

by

AE,(cation) = [E(A) + E(B)J - Eb (7)

= - [AEr(A) + AE(B)]
8

where Eb is the energy per bond in the bulk.

One can show that the vacancy formation energy for the anion is also given by Eq. (7),

using similar arguments. For both cation and anion, the vacancy formation energy is one-eighth

of the average removal energy--roughly the energy to break just one bond. Because the most

important mechanism in forming a vacancy is bond breaking, this result is not surprising. The

difference between the cation and the anion vacancies will come from corrections to this

energy caused by the Coulomb and rehybridization terms to be treated below.

C. Corrections to AE, and AE,

The cluster Hamiltonian does not include second neighbor interactions as it now stands;

thus, the final-state dangling hybrids do not interact with one another. The inclusion of a dan-

gling hybrid interaction results in an additional splitting of these states, with the A, level

lowered by 3cz, and the three T2 levels each raised by an amount a. We assume that

a = 0. i (Eh/EhSi)(dsi/d) 2 where cc, is taken from Baraff, Kane, and Schliiter. 2
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Another contribution to the removal energy comes from the charge redistribution that

occurs when a neutral atom is removed from the bulk of the crystal. When a neutral atom is

extracted from the crystal, the charge previously residing on that site is redistributed about the
."/1'

vacancy. We estimate these charge shifts from projected local charge densities of the initial-

and final-cluster eigenstates. Two contributions to the Coulomb energy are considered: the

average electron-electron interaction energy, U when the electrons are on the same site, and the .

Madelung modified energy, K when one electron is on the anion and the other is on the

cation.7 Assuming all the charge redistribution is in the first shell of atoms about the vacancy

site, the contribution to the vacancy energy that are caused by modifications in the electron-

electron energy AU, is given by

AU = [(Zi + )- (Z,)21(8)

Sii
4 22

12 8

where Zo is the net charge at the ih atomic site and i sums over all atom shells, where i=O is

the central atom, i=1 is the first shell of 4 atoms, and so on. U, differs from the cation to the

anion site and are taken from van Schilfgaarde, Chen, and Sher. 7 8, is the charge modification

at the ith site with 6, = -Z- and 5, = (l/4)Z,(, with all other charges unchanged. The changes

in the Madelung energy also contribute to the vacancy formation energy by an amount given

by -
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K(Zi + Si)(Z + 8) (Z,)(Z)) 2  (9)

31.2
d V0

where d is the bond length.

The removal energies will also be modified by Jahn-Teller distortion and lattice relaxa-

tion. These modifications have been calculated and found to be only a few percent and thus

are neglected.

D. Extension to dilute alloys

The method is easily extended to alloys by explicitly replacing specific atoms within the

cluster by a new species, because relatively small clusters of atoms have been used to describe

the vacancies. For dilute cation-substituted alloys, the central cation in the cluster of some host

lattice is replaced by a cation of the dilute species. The new cluster Hamiltonian is diagonal-

ized and the cluster energy calculated as in Eq. (5); the final-state energy is that of a vacancy
in the host lattice cluster plus the energy of a free cation of the dilute species. The removal

energy is then calculated from Eq. (4). For the anion removal energies in a dilute cation sub-

stituted alloy, we consider how the anion removal energy will be modified when we replace

one the of the cations adjacent to the removed anion by a cation of the dilute cation species.

For nondilute alloys, we need to consider various classes of clusters with various distributions

of cation, of the two species. To calculate the alloy removal energy, the energy of each class

of cluster must be weighted by the probability of its occurrence.
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III. RESULTS AND DISCUSSION

Cation and anion removal energies were computed for ZnTe, CdTe and HgTe, and the

results are listed in Table 1. Atomic term values were taken from Chen and Sher.8

Modifications from Coulomb and rehybridization energies, and the corrected removal energies

are also included. The removal energy for the anion is larger than for the cation for all com-

pounds, as expected. For both cation and anion, removal energies for HgTe are smaller than

those for ZnTe and CdTe; the removal energies are largest for ZnTe.

Removal energies were calculated for two cluster sizes: the large cluster of 104 hybrids

in the initial state, and a smaller cluster containing 32 hybrid orbitals that is truncated at the

second shell of atoms. For the II-VI compounds considered here, we found the removal ener-

gies changed by less than 18% for the cation, and less than 3% for the anion when we went

from the small to the large cluster size. We will confirm the full convergence of this calcula-

tion in the future.

We have estimated the vacancy formation energies onto a (I 11) surface for HgTe, CdTe

and ZnTe, using the removal energies computed above; the results are summarized in Table 2.

Note that the vacancy formation energy is of order of the energy to break one bond compared

to breaking four bonds for the removal energy. The difference between the removal and the

vacancy formation energies is an estimate of the sublimation energy, AE, from the (111) sur-

face; values for AE, are summarized in Table 2. The Hg is the easiest cation to evaporate

from an A surface. For all compounds, Te is more difficult to remove from a B surface than

'- the cations are to remove from an A surface. This large Te sublimation energy may be the

reason for Te precipitates forming in HgCdTe.

We have, as a first approximation, calculated AEr and AE,(1 11) for dilute alloys only.

Because the difference in both the removal and vacancy formation energies are small in Hg,
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Cd and Zn, we linearly extrapolated the end points to obtain the concentrated alloy results.

Results for Hgl-xCdTe and Hgl-,ZnxTe are shown in Fig. 1. The removal energies of Cd and

Zn are always greater than that of Hg, and the anion Te is always the most difficult to remove.

The cation energies are less sensitive to the alloy concentration x because the nearest neighbors

to cations are always four Te anions.

We call the vacancy formation energy AE,(I 11), and should emphasize that it refers to a

very specific final state of a cation going to a (11) A surface, and an anion going to a (11) B

surface. These final states correspond to the remaking of three bonds at the surface and, there-

fore, are the lowest energy unreconstructed surface-state possible. This final state necessarily

implies that, for example, the (111) A face has several sites with cations missing with each of

these sites serving as final states for the cation removed from the bulk. If no such sites are

available, then one needs to consider the next lowest AE, corresponding to the remaking of

two bonds, e.g. on a (110) surface. Thus, we see that the vacancy formation energy is strongly

dependent on the final states available to the removed atom. Because of this, it is difficult to

make a direct comparison of our results with experimental data. In addition, the measured for-

mation energies include contributions from interstitials as well as several possible charge states

of the vacancy. Thus, a more extensive calculation needs to be completed before any reliable

comparison with experiment can be done. However, we wish to note that these large

differences in final states imply that diffusion coefficients measured on samples with a slab

geometry will have thermal variations that are crystal-orientation dependent.

IV. SUMMARY AND CONCLUSION

In summary, we have calculated the AE r, the energy to remove an atom from the bulk to

a neutral free-atomic final state, and AE(I 11), the energy to remove a cation or anion from the I

bulk, and place it on the (111) A or B surface, thereby remaking three bonds. We have found

Zn is the most difficult cation to remove from the II-VI compounds and alloys. This supports
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the previous prediction based on the bond energies of HgTe in the Hg-based narrow gap lI-VI

alloys. 9  However, it is not sufficient to consider simply the bond energies when predicting

vacancy formation energies. The creation of a vacancy involves not only the breaking of four

bonds, but results in a back-bonding relaxation of the bonds about the vacancy site in the bulk,

and this energy can be substantial. In addition, the formation of a vacancy results in rehybridi-

zation of dangling bonds and charge redistributions about the vacancy site. We find that

dEv/dx for Hg in HgCdTe is slightly positive, contrary to our earlier suggestion based only on

bond energies. 9 However, dE,/dx for Hg in HgZnTe is even larger, a trend in agreement with

our prior predictions. In this first approximation, Hg vacancy formation energies in HgZnTe

are always larger than those in HgCdTe, for concentrations producing band gaps in the range

0.1 to 0.3 eV. Therefore, by this measure, HgZnTe is the more stable material.

In conclusion, we find:
. AEH(I 11) less in HgCdTe than in HgZnTe

• AE,*I( 11) less in HgTe than in CdTe or ZnTe

AEve ) is surprisingly low

, Sublimation energy of Te large compared to Hg

" In slab geometry, AE, is crystal-orientation dependent.
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TABLE I. Removal energies, AE r, and corrections from rehybridization, AEch, AE(a)
and Coulomb energies AU + AK. Experimental cohesive energies are shown for
comparison and were used in the determination of Vo. All energies are in units of eV.

Ech AEr AE(ot) AU + AK AEr (corrected)
Compound (exp.) Cation Anion Cation Anion Cation Anion Cation Anion

ZnTe 1.20 4.85 7.81 -0.41 -0.55 0.02 0.09 4.47 7.35

CdTe 1.10 4.40 6.98 -0.35 -0.48 0.05 0.21 4.10 6.71

HgTe 0.82 3.18 6.07 -0.35 -0.53 0.01 0.02 2.84 5.56
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TABLE 11. Vacancy formation energies, AE,(1 11) for
removal to a (I111) surface and AE'(1 11),
the sublimation energy from a (I111) surface, both
in units of eV.

AE,(l 11) (corrected) AE,(1 111) (corrected)

Compound Cation Anion Cation Anion

ZnTe 1.20 1.12 3.27 6.23
CJTe 1.12 1.15 2.98 5.56
H gTe 0.82 0.65 2.C2 4.91
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FIGURE CAPTION

Figure 1. Alloy variation of vacancy formation and removal energies in
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Appendix E

INTERACTIONS ,

We have established good work relations with Professor D. Stevenson and Professor
W.E. Spicer at Stanford, who are doing experiments related to our theory. We also work
closely with the Santa Barbara Research Center research group headed by T.N. Casselman. A
relationship is beginning with Professors Faurie and Raccah at the University of Illinois in Chi-
cago.
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